E. Leblond

Stamus Networks

Oct. 6, 2016

SSTAMVS

NETWORKS

What is Suricata

o IDS and IPS engine
o Get it here:
http://www.suricata-ids.org
o Open Source (GPLv2) SU AT A
o Initially publicly funded now funded by
consortium members

o Run by Open Information Security
Foundation (OISF)

o More information about OISF at
http://www.
openinfosecfoundation.org/

SSTAMV

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 2/41

http://www.suricata-ids.org
http://www.openinfosecfoundation.org/
http://www.openinfosecfoundation.org/

Suricata Features

o

High performance, scalable through multi threading
Advanced Protocol handling
o Protocol recognition
o Protocol analysis: field extraction, filtering keywords
o Transaction logging in extensible JSON format
File identification, extraction, on the fly MD5 calculation
o HTTP
o SMTP

TLS handshake analysis, detect/prevent things like Diginotar
Lua scripting for detection

Hardware acceleration support:

o Endace
o Napatech,

o CUDA

o PF_RING SSTAMV

o

©

© 0 ©O

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 3/41

A typical signature example

Signature example: Chat facebook

alert http $HOME NET any —> $EXTERNAL NET any \

(

msg : ;

flow : established ,to_server; content: ; http_method; \

content: ; http_uri; content: ; http_host; \
content: ; http_client_body;

reference :url ,ww. emergingthreats.net/cgi—bin/cvsweb. cgi/sigs/POLICY/POLICY_Facebook_Chat; \
sid:2010784; rev:4; \
)

This signature tests:
o The HTTP method: POST
o The page: /ajax/chat/send.php
o The domain: facebook.com
o The body content: netdev
SSTAMV

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 4/41

No passthrough

All signatures are inspected
o Different from a firewall
o More than 15000 signatures in standard rulesets

Optimization on detection engine
o Tree pre filtering approach to limit the set of signatures to test
o Multi pattern matching on some buffers

SSTAMV

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 5/41

CPU intensive

E. Leblond (Stamus Networks)

43, 31 11

7.24 7.32
82 days, 23:13:26

Jusr/local

usr/local
fusr/local
/usr/local
fusr/local
Jusr/local
/usr/local
Jusr/local
fusr/local
Jusr/local
/usr/local

35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35

/usr/local

The adventures of a Suricate in eBPF land

SSTAMV

Oct. 6, 2016

6/41

Perf top

: 691K of event
Shared Object

[kernel]
suricata
libpthread-2.19.s0
[kernel]
libpthread-2.19.s0

suricata
[kernel]
[kernel]
libc-2.19.s0
[kernell
[kernel]
[kernel]
suricata
[kernel]
[kernel]

E. Leblond (Stamus Networks)

, Event count (approx.): 256764876818
Symbol

SCACSearch
BoyerMoore
SigMatchSignatures

lock
AFPReadF romRing
irg_entries_start
tpacket_rcy
_ memcmp_ssed 1
memcpy
ixgbe polT
menu_sel
StreamTcpPacket
native write msr_safe
packet lookup frame.isra.56

SSTAMV

The adventures of a Suricate in eBPF land Oct. 6, 2016 7/41

o Bandwith per core is limited
o From 150Mb/s
o To 500Mb/s

o Scaling

o Using RSS
o Splitting load on workers

SSTAMVS

NETWORKS

AF_PACKET

Linux raw socket
o Raw packet capture method
o Socket based or mmap based

Fanout mode
o Load balancing over multiple sockets
o Multiple load balancing functions

Flow based
CPU based
RSS based
eBPF based

(+]

© © O

SSTAMV

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 9/41

Suricata workers mode

System IRQ CPU link
Ethernet Card
Flow load-balancing
IRD 0 IRQ 1 IRQ 2 IRQ 3 IRQ 4 IRQ 5
RX RX RX
CPU 0 CPU 1 CPU 2 CPU 3 CPU 4| CPU 5|
\Capture| ‘Capture‘ \Capture| ‘Capture| |Capture| |Capture|
[Decode | ‘ Decode ‘ [Decode | ‘ Decode | | Decode | | Decode |
\ Stream | ‘ Stream ‘ ‘ Stream | ‘ Stream | | Stream | | Stream |
[Detect | ‘ Detect ‘ [Detect | ‘ Detect | I Detect | | Detect I
‘ Output | ‘ Output ‘ ‘ Output | ‘ Output | | Output | | Output |
Thread || Thread || Thread || Thread || Thread || Thread
CPU 0 CPU 1 CPU 2 CPU 3 CPU 4 CPU 5
Suricata o Sy

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land

SSTAMV

Oct. 6, 2016 10/ 41

Load balancing and hash symmetry

Effect of non symmetrical

Stream reconstruction =)

o Using packets sniffed from

Thread 1
network
o to reconstruct TCP stream

as seen by remote

application -

Non symmetrical hash break
o Out of order packets

to
client

client

Order in stream engine

SSTAMV

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 11/41

Broken symmetry

History

o T. Herbert introduce asymmetrical hash function in flow
o Kernel 4.2

o Users did start to complain
o And our quest did begin
o Fixed in 4.6 and pushed to stable by David S. Miller

Intel NIC RSS hash
o XL510 hash is not symmetrical

o XL710 could be symmetrical

o Hardware is capable
o Driver does not allow it
o Patch proposed by Victor Julien

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016

12/41

eBPF cluster

Userspace to the rescue
o Program your own hash function in userspace
o Available since Linux 4.3
o Developed by Willem de Bruijn
o Using eBPF infrastructure by Alexei Storovoitov

eBPF cinematic
o Syscall to load the BPF code in kernel
o Setsockopt to set returned fd as cluster BPF

SSTAMV

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 13/41

The big flow problem

Ring buffer overrun
o Limited sized ring buffer
o Overrun cause packets loss
o that cause streaming malfunction

Bypassing big flow
o Limiting treatment time at maximum

o Stopping it earlier as possible

o local bypass: Suricata limit handling
o capture bypass: interaction with lower layer

SSTAMV

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 14 /41

Stream depth

Attacks characteristic
o In most cases attack is done at start of TCP session
o Generation of requests prior to attack is not common

o Multiple requests are often not even possible on same TCP
session

Stream reassembly depth

o Suricata reassemble TCP sessions till
stream.reassembly.depth bytes.

o Stream is not analyzed once limit is reached

SSTAMV

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 15/41

Introducing bypass

Principle

o No need to get packet from kernel after stream depth is reached
o Ifthereis

o no file store
o or other operation

Usage
Set st ream.bypass option to yes in Suricata config file to bypass

SSTAMV

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 16/41

Selective bypass

Ignore some traffic
o Ignore intensive traffic like Netflix
o Can be done independently of stream depth
o Can be done using generic or custom signatures

The bypass keyword

o A new bypass signature keyword

o Trigger bypass when signature match
o Example of signature

alert http any any — any any (content: HERNY
http_host; bypass; sid:6666; rev:1;)

SSTAMV

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 17 /41

Implementation

Suricata update
o Add callback function
o Capture method register itself and provide a callback
o Suricata calls callback when it wants to offload

Coded for NFQ
o Update capture register function
o Written callback function

o Set a mark with respect to a mask on packet
o Mark is set on packet when issuing the verdict

SSTAMV

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 18/41

And now AF_PACKET

What’s needed
o Suricata to tell kernel to ignore flows

o Kernel system able to

o Maintain a list of flow entries
o Discard packets belonging to flows in the list
o Update from userspace

o nftables is too late even in ingress

eBPF filter using maps

o eBPF introduce maps
o Different data structures

o Hash, array, ...
o Update and fetch from userspace

o Looks good!

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 19/41

eBPF usage

Handling code
o Need to generate code
o Load code
o Address code from Suricata

Interact with code
o Add elements in hash table
o Query elements
o Delete elements

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land

SSTAMV

Oct. 6, 2016

20/ 41

LLVM backend

From C file to eBPF code
o Write C code
o Use eBPF LLVM backend (since LLVM 3.7)
o Get ELF file
o Extract and load section in kernel

SSTAMV

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 21/41

BCC: BPF Compiler Collection

A complete framework

o Instrument eBPF filter
o Multi language

o Python

o Lua

o C++

o Transparent handling of kernel interaction

Cinematic
o eBPF C code is a side file or integrated into code
o C code is dynamically built when script is started
o ltis injected to kernel

o Post processing is done

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 22/ 41

Importing mechanism

o Syscall to load the object inside kernel
o A file descriptor is returned
o It can be used by setsockopt to define the cluster using provided fd

SSTAMV

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 23 /41

Suricata eBPF cluster

Initial version
o LLVM backend
o Using libelf to load object

Time saver
o Debug message from kernel eBPF code
o bpt_trace_printk() function

O cat /sys/kernel/tracing/trace

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land

SSTAMV

Oct. 6, 2016

24 /41

AF_PACKET bypass

Logic is the same
o Using eBPF filter this time
o Syscall to load eBPF
o Linking via setsockopt
o Need to use a eBPF map of type hash

Here comes the map
o Map is used by kernel and userspace
o eBPF file can’t contain absolute reference
o Maps must be created by userspace
o Relocation must be done in ELF file

Game Over

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land

SSTAMV

Oct. 6, 2016

25/41

Switch to libbpf

Library from tools/lib/bpf
o Provide high level function to load eBPF elf file
o Create maps for user
o Do the relocation

Sample usage

struct bpf_object xbpfobj = bpf_object__open(path);
bpf_object__load (bpfobj);
pfd = bpf_program__fd (bpfprog);
/+« store the map in our array x*/
bpf_map__for_each(map, bpfobj) {
map_array|[last].fd = bpf_map__fd(map);
map_array[last].name = strdup (bpf_map__name(map));
last++;

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016

26 /41

Libbpf implementation

libbpf is work in progress
o Not network ready
o Missing a few filter types
o Missing functions to interact

Patchset in progress
o Cleaning of initially proposed code
o Adding missing features

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land

SSTAMV

Oct. 6, 2016

27 /41

Kernel code and exchange structure

struct pair {
uinté4_t time;
uint64_t packets;
uint64_t bytes;
b

struct bpf_map_def SEC() flow_table_v4 = {
.type = BPF_MAP_TYPE_HASH,
.key_size = sizeof(struct flowv4_keys),
.value_size = sizeof(struct pair),
.max_entries = 32768,

s

value = bpf_map_lookup_elem(&flow_table_v4, &tuple);
if (value) {
__sync_fetch_and_add(&value—>packets, 1);
__sync_fetch_and_add(&value—>bytes, skb—>len);
value—time = bpf_ktime_get_ns();
return 0;

}

return —1;

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016

28 /41

o Data is updated with stats
o Getting last flow activity time allow Suricata to handle timeout

SSTAMVS

NETWORKS

Userspace code

struct flowv4_keys {
_ be32 src;
_ be32 dst;
union {
_ be32 ports;
__bel6 porti6[2];
IE
u32 ip_proto;

b5

while (bpf_get_next_key(mapfd, &key, &next_key) == 0) {

bpf_lookup_elem (mapfd, &key, &value);

clock_gettime (CLOCK_MONOTONIC, &curtime);

if (curtime—>tv_sec x 1000000000 — value.time > BYPASSED_FLOW_TIMEOUT)
flowstats —>count++;
flowstats —>packets += value.packets;
flowstats —>bytes += value.bytes;
bpf_delete_elem (fd, key);

1
key = next_key;

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 30/ 41

?

Got to be ready
o This is KAME land: http://www.kame.net/

SSTAMVS

NETWORKS

http://www.kame.net/

IPv6 bypass

IPv6 is the same as IPv4
o Same algorithm
o Second hash table using IPv6 tuple

Really ?
o Parsing is a bit different due to next header
o IPv6 hash table is failing to load in kernel

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land

SSTAMV

Oct. 6, 2016

32/ 41

The exercise of adding the egress counterpart and IPv6 support is left to the
reader

Daniel Borkmann in tc_bpf.8

SSTAMVS

NETWORKS

IPv6 bypass

Two hash tables
o A bug in libbpf
o Invalid offset computation of map definition
o Fixed by mimic tc_bpf.c code (thanks Daniel Borkmann)

IPv6 parsing
o For now, sending weird packets to userspace

SSTAMV

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 34/ 41

Test methodology

Test setup
o Intel(R) Xeon(R) CPU E5-2680 0 @ 2.70GHz
o Intel Corporation 82599ES 10-Gigabit SFI/SFP+

o Live traffic:

o Around 1Gbps to 2Gbps
o Real users so not reproducible

Tests
@ One hour long run
o Different stream depth values
o Collected Suricata statistics counters (JSON export)

o Graphs done via Timelion
(https://www.elastic.co/blog/timelion-timeline)

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 35/ 41

https://www.elastic.co/blog/timelion-timeline

‘Deduplcation 40% / Quey Time 24ms Procesing Time 67

s peperiod @a1170000
: e prpercd (13599371040

A

[r—e)

EEErT

Wopped ks 000
: MCituedaciets D12743300
! A
@ oo eiom e ol a0 loom ewde ledom leew 0w e oo
-]

_
@ oo siow s e o im0 oo s a0 w0 oo

SSTAMVS

NETWORKS

MOroppedpckes 000
WCaptued pats (17000)

SSTAMVS

NETWORKS

A few words on graphics

Tests at 1mb
o Mark show some really
high rate bypass

o Potentialy a big high speed
flow

v

Tests at 512kb

o We have on big flow that
kill the bandwidth

o Capture get almost null

o Even number of closed
bypassed flows is low

SSTAMV

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 38 /41

AF_PACKET bypass and your CPU is peaceful

STAIVS

 E.Leblond (Stamus Networks) The adventures of a Suricate in éBPF land | Oct. 6,2016 39/41

Conclusion

Suricata and eBPF
o A fresh but interesting method
o Bypass looks promising
o More tests to come

More information
o Suricata: http://www.suricata—ids.org/
o Stamus Networks: https://www.stamus—networks.com/

o Suricata eBPF code:
https://github.com/regit/suricata/tree/ebpf-3.7

SSTAMV

E. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 40/ 41

http://www.suricata-ids.org/
https://www.stamus-networks.com/
https://github.com/regit/suricata/tree/ebpf-3.7

Thanks to
o Alexei Storovoitov
o Daniel Borkmann
o David S. Miller

Contact me

o Mail: eleblond@stamus-
networks.com

o Twitter: @regiteric

More information

o Suricata eBPF code: https:
//github.com/regit/
suricata/tree/ebpf-3.7

https://github.com/regit/suricata/tree/ebpf-3.7
https://github.com/regit/suricata/tree/ebpf-3.7
https://github.com/regit/suricata/tree/ebpf-3.7

	Introduction to Suricata
	What's this ?
	A few words on performance

	Suricata meets eBPF
	AF_PACKET
	Interest of bypass

	eBPF technology
	eBPF cluster or the start of the travel
	eBPF bypass or lost in translation
	Some results
	Conclusion

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	anm0:

